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Abstract. A study of the one-dimensional compressible Ising model, in zero field, with 
quadratic potential energy and linear exchange parameter, is presented, using a canonical 
transformation of the hamiltonian. Earlier solutions are corrected and generalized, the 
role of the four-spin interaction in different ensembles being made explicit. The results 
agree with the solutions of the Baker-Essam model. 

1. Introduction 

Several solutions for a compressible Ising model have been suggested during recent 
years. Domb (1956) showed that, if the exchange parameter J of the Ising hamiltonian 
is considered as a function of the bulk volume I/ of the lattice, there is a mechanical 
instability and the transition becomes of first order. Mattis and Schultz (1963) put 
forward a theory of elastic induced magnetic transitions and were able to  present an 
‘exact’ (ie, taking into account the microscopic position fluctuations) one-dimensional 
calculation to demonstrate that Domb’s model is not good in one dimension at zero 
pressure. Baker and Essam (1970) worked out a three-dimensional model where the 
elastic potential energy is quadratic and J linear in terms of the microscopic displace- 
ments, and the shear forces are completely neglected; this model is always stable, there 
is no first order transition, and the one-dimensional version at zero external pressure 
corresponds to the Mattis solution. Gunther et a1 (1971) used the pressure ensemble 
to obtain an algebraically simpler solution of the Baker-Essam model. Matsudaira 
(1968), Wagner (1970), and Bolton and Lee (1970,1971), with quadratic potential energy, 
linear J ,  and zero field, used a canonical transformation to obtain an effective hamiltonian 
including the long-range interaction of two pairs of spins. Matsudaira, who neglected 
the influence of transverse phonons, and Bolton and Lee, who used a Debye approxima- 
tion for the phonon spectrum, worked out mean-field solutions for the transformed 
hamiltonian at zero pressure. Wagner used the droplet model picture to show that the 
specific heat at constant vanishing pressure remains finite at the transition temperature. 

We think that this sort of transformation of the hamiltonian may be very helpful to 
investigate the three-dimensional problem more rigorously, and we present here a study 
of the phase diagram for the one-dimensional case, correcting some results of Bolton 
and Lee, and showing how to obtain an agreement with the Baker-Essam solution in 
both canonical and pressure ensembles. For our purposes the classical situation is more 
convenient to treat, and the quantum treatment of the elastic vibrations should follow 
analogously. 
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2. The four-spin transformation of the hamiltonian 

The hamiltonian is given by : 

X = @+Y-K,X,+KE, 

where 

@ = &Xm-Xn), Y = c - J ( X m - X , ) b , b , ,  

NXm- Xn) = 4 0  + $4 2 ( X m  - Xn - ao)', 

J ( X ,  - X,) = J, - J,(X, - x, - ao); 

0" (mn) 

and 

40, &, J o ,  J1 and a. are positive constants; K ,  are the applied forces and KE is the 
kinetic energy term. Let us expand this hamiltonian about some equilibrium lattice 
position R,  such that X ,  = R,  + U,. This gives : 

H = K E + ~ { R , } + Y { R , }  -K,R,+(~"+Y"-K")u,+$u,~""u, ,  (2.2) 

where 0"' and Y"' are the first derivatives of 0 and Y with respect to X ,  at the position 
R, ; 0"', the second derivative of 0, is always a constant. The transformation is straight- 
forward if we write : 

U, = u,+ii, (2.3) 

where 

W"a, = - (0" + '4" - K") 

and the usual summation convention is assumed. Using the static Green function for 
the elastic lattice G"', where 

(2.5) @mnGnm' = - 8m.m' 

we obtain the transformed hamiltonian, which becomes separated into an elastic and a 
magnetic part : 

3' = KE + @{R,} +$U,@'"~U, - K"R, + Y {R,} +%a"'+ Y" - K")Ei, (2.6) 
where 

a, = Gmn(O"+Y"-K"). 

At this point there are two distinct choices of boundary conditions: (i) either we 
can fix the volume (ie the length) of the lattice and work in the usual canonical ensemble 
(in this case the terms containing the forces should be dropped from the hamiltonian); 
or (ii) we can let the volume fluctuate and fix the external forces, working in the pressure 
ensemble. The thermodynamic potential related to the partition function in case (i) 
is the Helmholtz free energy, and in case (ii) the Gibbs potential ; the elastic Green 
function is going to be quite different for each case, and the four-spin interaction becomes 
a constant only for fixed forces. The Baker-Essam solution corresponds to situation (i), 
and the Gunther et a1 solution to situation (ii). In the thermodynamic limit they are 
related by the usual Legendre transformation. 
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3. Fixed forces case 

In this case either we can have the same force, in opposite directions, applied to both 
ends of the lattice, or we can fix the initial position and apply a single force to the 
other end. In the former possibility the centre of mass has to be fixed in order to calculate 
G"'"; however, it is equally simple to obtain the 0 ,  through a finite induction procedure 
and write the four-spin interaction term immediately. We are going to show the solution 
with the initial position fixed. 

Let us first define the expansion positions R ,  by the condition 

@"'-Km = 0 everywhere. (3.1) 

Then { R m }  is not the true equilibrium position of the lattice, but the equilibrium position 
of the bare elastic lattice, subjected to the same forces. Our hamiltonian becomes : 

i?? = K E + @ { ~ }  + ANa +&,,@'"un + Y {a} +FSI (3.2) 
where A is the applied force, a is given by equation (3.1), and FSI is the four-spin interaction : 

FSI = $VtG Y, 

in matrix notation. The components of V are Yi = .Jl(oi-loi-oioi+l) where i E [l, NI,  
and c-l = oN+l = 0. G is given by -a-' where it is easy to show that: 

1 a-l =-  4 2 [ :  1 2 : 3 : . . .  3 1 .  

. . .  
\ 1  2 3 . . .  N /  

Then it follows : 
J ;  N 
242 

FSI = --, (3.3) 

and our hamiltonian becomes a simple quadratic elastic part plus an independent Ising 
magnetic part : 

The partition function is : 

where Z , ( f l J e f f )  is an Ising partition function calculated at 
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The Gibbs potential is : 

G(T,A) = N (3.7) 

This result reduces to the Mattis solution if we make A = 0. The Baker-Essam 
model is immediate : the absence of shear forces block-diagonalizes the matrix @ for 
the simple cubic lattice, and each of the identical blocks corresponds to  one of the 3 N  
lines of atoms of the crystal. If we substitute 3 N  for N in equation (3.7), where N now 
means the number of unit cells, we regain the Gibbs potential of Gunther et al. The 
real lattice spacing aR is given by : 

I J 1  
4 2  4 2  

where the average   BO),^^ is a nearest-neighbour spin-spin correlation function cal- 
culated with Z,(fiJ,,,). In one dimension there is no phase transition, except at zero 
degrees, when there is a first-order transition at the negative force h: = - J , 4 2 / J 0 ,  
with a jump in the lattice parameter. It is interesting to point out that: (a) Domb's 
model in one dimension, plus a Maxwell construction, gives a first-order transition at 
this same pressure, but extending to a temperature range from zero to T = ; 
(b)  a mean-field treatment of the transformed hamiltonian gives the same first-order 
transition at zero degrees and the usual mean-field second-order transitions at higher 
temperatures. The Baker-Essam model in three dimensions, in the A-T plane, has a 
first-order transition at A = - J,4,/JO and T = 0, and two lines of second-order Ising 
transitions for higher temperatures (an antiferromagnetic-paramagnetic transition 
with J negative, at lower pressures, and a ferromagnetic-paramagnetic transition, with 
J positive, at higher pressures). 

4. Fixed volume case 

In order to use the length of the lattice as our parameter, we can either fix the ends or 
consider periodic boundary conditions for the underlying elastic lattice. Both alter- 
natives lead to  the same result, namely that the elastic part of the hamiltonian is again 
a quadratic form of immediate integration, while the magnetic part, containing two- and 
four-spin interactions, may be reduced, by means of the 6-7 transformation (see Suzuki 
1971), to a well known model solved by Kac (see Stanley 1971). Using periodic boundary 
conditions, for the purpose of comparing with Bolton and Lee, our hamiltonian becomes : 

S = KE + @{Rm} + $v,@"~v, + Y { R,} + FSI 

where the {R,} are now the true equilibrium positions of the lattice, and FSI has the 
same form as in Q 3, with the Green function given by: 

where M is the ionic mass, a is the lattice spacing, and CO: = (42/M)(2 - 2 cos ka); 
the sum is over k in the first Brillouin zone. Bolton and Lee did not exclude the term 
k = 0; hence they did not fix the centre of mass, allowing the presence of a singularity 



On the one-dimensional compressible king model 1531 

in the definition of the Green function. This mistake also affects their three-dimensional 
mean-field calculation, Our four-spin interaction becomes : 

(2 - 2 cos ka). (4.3) 1 1 eika(m-n) FSI = -- C 7 J :  ~ m ~ m + l ~ n ~ n + l  
2 N M k + O u k  m,n 

Using the property of periodic lattices : & eiko(m-n) = Nh,,,, we have: 

The effective magnetic hamiltonian is given by : 

The one-to-one D--z transformation gives : 

(4.5) 

In this last form of the hamiltonian each spin interacts equally-with an exchange 
parameter proportional to N-l-with all other spins of the system. Such a model 
has been studied by Kac, who showed that its exact solution coincides with the conven- 
tional mean-field solution. In our case we may suppose that there is a phase transition 
when the Zeeman term vanishes (ie, when J(a)  = 0) ; however, as the exchange parameter 
is always positive, a simple inspection indicates that there is no such phase transition, 
except at  zero degrees. 

In the thermodynamic limit an exact solution for this hamiltonian may be obtained 
as follows. Let us write Xi -zi = N m ;  the partition function is: 

where 

N !  
($N( 1 + m)} ! ($N( 1 - m)} ! ' 

W(m) = 

For N large we can use Stirling's approximation to simplify the expression of 
and the integral may be calculated by a saddle-point technique. The stationary 
is mo, - 1 < mo < + 1, given by the equation: 

BJ:  
4 2  

PJ(u)--mo = tanh-'m,. 

A graphical analysis of this equation shows that there is only one value of m,, thus 
eliminating the possibility of a first-order phase transition. The partition function 
becomes : 

-mi)+ N ln{2(1 -mi) -  l I 2 }  

x j-+ll dm exp { -:(m- mo)2 (4.10) 
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In the thermodynamic limit we have: 

J: I n 2  = --(1 - m i ) -  J(a)mo 
1 1 
zF-= -- NB 242 

Using equation (4.9) we can write this expression in a more suitable form : 

1 
zFmaP = 

242 

(4.11) 

(4.12) 

However, we also have : 

(4.13) 
i a  

PN aJ(4 (aa) = (m) = --1nZ = m,.  

So the magnetic part of the free energy is finally written as : 

PJf )] (4.14) N F ~ ~ ~  = - - ( l+(~o)~)- - ln  2cosh PJ(a)--(aa) P ‘ I  ( 4 2  

1 J: 
242 

where 

(aa) = tanh (4.15) 

For a one-dimensional Ising model, with the hamiltonian 2 = -Jeff Ciaiai+l, we 
have : 

(4.16) 
1 1 
- FI = -- ln(2 cosh /?Jeff) 
N P 

and 

(ao>* = tanh(bJeff1. (4.17) 

These relations allow us to write our total expression for the free energy as : 

(4.18) 
NJ: 
242 

+ N{~,+~42(a-ao)2)----(1 +(aa)~ff)+F,(Jeff) 

where 

J: 

42 
Jeff = J(Q)--(ao>eff 3 

and is the nearest-neighbour spin-spin correlation function calculated for an 
Ising model with exchange parameter Jeff. 

This is the exact result obtainable from Baker and Essam in the one-dimensional 
case. There is no phase transition, except at zero degrees, when the situation is analogous 
to the preceding section; the external pressure is given by: 

(4.19) 
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and the Gibbs potential is reproduced when we perform the Legendre transformation 

(4.20) G(i, T )  = F(a, T )  + ANa 

with a given by expression (4.19). 

5. Conclusions 

I t  is important to observe that, for this simple one-dimensional model, the four-spin 
interaction has different expressions in the canonical and in the pressure ensembles. 
In particular it becomes a constant in the pressure ensemble, making it apparent that 
we do not have to worry about long-range effects; however, this is not so clear in the 
canonical ensemble. The presence of shear forces in the Baker-Essam model should 
be investigated, in the pressure ensemble, paying attention to the introduction of 
additional long-range interactions. It should also be pointed out that some authors, 
like Wagner, may not be right when they use a pressure ensemble and, at the same time, 
work with a Green function which is calculated on the basis of periodic boundary 
conditions. 
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